How do you find the maximum/minimum value of an equation?

When finding the maximum or minimum of an equation, make sure you rearrange an equation to make y the subject of the equation i.e. y=_________. You can then differentiate with respect to x and then set the differentiated equation to zero.

E.g. If y = 3x2 + 5, y' = 6x. Setting y' = 0, you will find that x is also 0. Substitute this back into the original equation:

y= 3(0)2 + 5 = 5, so therefore the minimum value is 5. To check if this is a maximum or a minimum value, differentiate it again and check if it is a positive value (therefore a minimum) or a negative value (therefore a maximum).

I.e. y'' = 6 which is positive, therefore is a minimum value.

You can check to see if this is true by drawing a graph. You should see a U shaped curve where bottom of the graph has the coordinates of (0,5).

JC
Answered by Jawad C. Maths tutor

5815 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve with the equation y = x^3+7x^2+1 at x=2


Prove 2^n >n for all n belonging to the set of natural numbers


Simplify: 3l^2mn+nl^2m−5mn^2l+l^2nm+2n^2ml−mn^2


Prove the following identity: (1+cos⁡(x)+cos⁡(2x))/(sin⁡(x)+sin⁡(2x) )=cot⁡(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning