How do you find the maximum/minimum value of an equation?

When finding the maximum or minimum of an equation, make sure you rearrange an equation to make y the subject of the equation i.e. y=_________. You can then differentiate with respect to x and then set the differentiated equation to zero.

E.g. If y = 3x2 + 5, y' = 6x. Setting y' = 0, you will find that x is also 0. Substitute this back into the original equation:

y= 3(0)2 + 5 = 5, so therefore the minimum value is 5. To check if this is a maximum or a minimum value, differentiate it again and check if it is a positive value (therefore a minimum) or a negative value (therefore a maximum).

I.e. y'' = 6 which is positive, therefore is a minimum value.

You can check to see if this is true by drawing a graph. You should see a U shaped curve where bottom of the graph has the coordinates of (0,5).

JC
Answered by Jawad C. Maths tutor

5913 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y = 2x cos(3x) + (3x^2-4) sin(3x). Find the derivative in the form (mx^2 + n) cos(3x)


Let X be a normally distributed random variable with mean 20 and standard deviation 6. Find: a) P(X < 27); and b) the value of x such that P(X < x) = 0.3015.


If f(x) = (3x-2) / x-5 x>6, find a.) ff(8) b.) the range of f(x) c.) f^-1(x) and state its range.


By first expanding the brackets, differentiate the equation: y=(4x^4 + 3x)(2x^2 - 9)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning