f(x) = 2x^3 – 7x^2 + 4x + 4 (a) Use the factor theorem to show that (x – 2) is a factor of f(x). (2) (b) Factorise f(x) completely.

We are presented with a third order polynomial with 4 terms, so we expect 3 solutions for f(x)=0. To prove that (x-2) is a factor we must insert the value of x=2 into the function and if f(2)=0 then we have verified that (x-2) is a factor. We can now perform long division using the property of polynomials (which states that a polynomial is divisible by it's factors) to simplify f(x) by dividing through by (x-2).

This results in (2x^2 - 3x - 2), which can be simplied further via factorisation to produce (x-2)(2x+1). We have now fully factorised f(x) and can see that we have a repeated root at x=2 so even though f(x)=(x-2)(x-2)(2x+1) is a correct answer it is better practice to write the final answer as f(x)=(x-2)^2 (2x+1) so that the repeated root can be seen clearly.

To double check that (2x+1) is a factor we can insert the value of x=-1/2 such that f(-1/2)=0.

NA
Answered by Nazar A. Maths tutor

15470 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of the function f(x) = x^3 - 27x and determine whether they are maxima or minima


(A-Level) Find the coordinate of the stationary point of the curve y = 2x + 27/x^2


For the curve f(x) = 2x^3 - 54x, find the stationary points and state the nature of these points


Intergrate ln(x) with resepct to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning