Solve the following equation: 4(sinx)^2+8cosx-7=0 in the interval 0=<x=<360 degrees.

  1. We first use the identity sin2x+cos2x=1  to substitute for sin^2 in terms of cos. 

          sin^2(x)=1-cos^2(x)  ------------->  -4cos^2(x)+8cosx-3=0

  1. We use the standard quadratic formula to solve for cos(x): 

          cos(x)=(-8+sqrt(64-4*(-4)(-3)))/-8        or             cos(x)=(-8-sqrt(64-4(-4)*(-3)))/-8 

  1. These 2 equations give us the values of cos(x) : 

          cos(x)=0.5                                          and            cos(x)=1.5

  1. We know that cos(x) only has a range between -1 and +1, so we  can discard the second solution as it falls outside that range. 

  2. Using the CAST diagram, we can see that the solutions for x that fall within the range stated are :

          x=60 degrees                        and                        x=300 degrees

NW
Answered by Natalia W. Maths tutor

13958 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(C3 question). Find an expression for all stationary points on the curve y=sin(x)cos(x). How many such points are there and why?


If z1 = 3+2i, z2= 4-i, z3=1+i, find and simplify the following: a) z1 + z2, b) z2 x z3, c)z2* (complex conugate of z2), d) z2/z3.


Prove that 1 + tan^2 x = sec^2 x


Solve the following simultaneous equations y + 4x + 1 = 0, y^2 + 5x^2 + 2x = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning