Solve the following equation: 4(sinx)^2+8cosx-7=0 in the interval 0=<x=<360 degrees.

  1. We first use the identity sin2x+cos2x=1  to substitute for sin^2 in terms of cos. 

          sin^2(x)=1-cos^2(x)  ------------->  -4cos^2(x)+8cosx-3=0

  1. We use the standard quadratic formula to solve for cos(x): 

          cos(x)=(-8+sqrt(64-4*(-4)(-3)))/-8        or             cos(x)=(-8-sqrt(64-4(-4)*(-3)))/-8 

  1. These 2 equations give us the values of cos(x) : 

          cos(x)=0.5                                          and            cos(x)=1.5

  1. We know that cos(x) only has a range between -1 and +1, so we  can discard the second solution as it falls outside that range. 

  2. Using the CAST diagram, we can see that the solutions for x that fall within the range stated are :

          x=60 degrees                        and                        x=300 degrees

NW
Answered by Natalia W. Maths tutor

13589 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A tunnel has height, h, (in metres) given by h=14-x^2 where x is the horizontal distance from the centre of the tunnel. Find the cross sectional area of the tunnel. Also find the maximum height of a truck passing through the tunnel that is 4m wide.


∫ 4/x^2+ 5x − 14 dx


How would I differentiate y = 3xy + 2x^2 + x^2y^2 ?


Differentiate y= (2x+1)^3. [The chain rule]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning