Solve the following equation: 4(sinx)^2+8cosx-7=0 in the interval 0=<x=<360 degrees.

  1. We first use the identity sin2x+cos2x=1  to substitute for sin^2 in terms of cos. 

          sin^2(x)=1-cos^2(x)  ------------->  -4cos^2(x)+8cosx-3=0

  1. We use the standard quadratic formula to solve for cos(x): 

          cos(x)=(-8+sqrt(64-4*(-4)(-3)))/-8        or             cos(x)=(-8-sqrt(64-4(-4)*(-3)))/-8 

  1. These 2 equations give us the values of cos(x) : 

          cos(x)=0.5                                          and            cos(x)=1.5

  1. We know that cos(x) only has a range between -1 and +1, so we  can discard the second solution as it falls outside that range. 

  2. Using the CAST diagram, we can see that the solutions for x that fall within the range stated are :

          x=60 degrees                        and                        x=300 degrees

NW
Answered by Natalia W. Maths tutor

13956 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: ln((e^x+1)/e^x-1))


How do you integrate by parts?


(Core 2) Show that the region bounded by the curve y = 7x+ 6 - (1/x^2), the x axis and the lines x = 1 and x = 2 equals 16


Sketch the graph y=-x^3, using this sketch y=-x^(1/3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning