differentiate (1+2x^2)^(1/2)

This differentiation requires use of the chain rule. The first step is to differentiate the whole thing, treating the bracket as u, so u=1+2x2. Therefore we are differentiating u1/2. This means our first step gives us the value:   1/2*u-1/2     (given student understands simple differentiation) Replacing u this gives us  1/2 *(1+2x2)-1/2   but now we must multiply this by the differential of the inside of the bracket (u=1+2x2) differentiating gives:  du/dx=4x   as the constant term disappears. so putting this back in, you multiply our two answers together to give                          dy/dx = 1/2 *(1+2x2)-1/2 *4x                            = 2x *(1+2x2)-1/2   and so you have your answer.

RS
Answered by Reuben S. Maths tutor

9844 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (3 + 13x - 6x^2)/(2x-3) in the form Ax + B + C/(2x - 3)


Find the equation of the tangent line to the parabola y=x^2+3x+2 at point P(1, 6).


How do I expand a bracket to a negative power if it doesn't start with a 1.


How does integration by parts work ad when to use it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences