differentiate (1+2x^2)^(1/2)

This differentiation requires use of the chain rule. The first step is to differentiate the whole thing, treating the bracket as u, so u=1+2x2. Therefore we are differentiating u1/2. This means our first step gives us the value:   1/2*u-1/2     (given student understands simple differentiation) Replacing u this gives us  1/2 *(1+2x2)-1/2   but now we must multiply this by the differential of the inside of the bracket (u=1+2x2) differentiating gives:  du/dx=4x   as the constant term disappears. so putting this back in, you multiply our two answers together to give                          dy/dx = 1/2 *(1+2x2)-1/2 *4x                            = 2x *(1+2x2)-1/2   and so you have your answer.

RS
Answered by Reuben S. Maths tutor

10241 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Expand (1+0.5x)^4, simplifying the coefficients.


Find the gradient of a curve whose parametric equations are x=t^2/2+1 and y=t/4-1 when t=2


Find the equation of the normal of the curve xy-x^2+xlog(y)=4 at the point (2,1) in the form ax+by+c=0


Simplify: 3l^2mn+nl^2m−5mn^2l+l^2nm+2n^2ml−mn^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning