differentiate (1+2x^2)^(1/2)

This differentiation requires use of the chain rule. The first step is to differentiate the whole thing, treating the bracket as u, so u=1+2x2. Therefore we are differentiating u1/2. This means our first step gives us the value:   1/2*u-1/2     (given student understands simple differentiation) Replacing u this gives us  1/2 *(1+2x2)-1/2   but now we must multiply this by the differential of the inside of the bracket (u=1+2x2) differentiating gives:  du/dx=4x   as the constant term disappears. so putting this back in, you multiply our two answers together to give                          dy/dx = 1/2 *(1+2x2)-1/2 *4x                            = 2x *(1+2x2)-1/2   and so you have your answer.

RS
Answered by Reuben S. Maths tutor

10736 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f(x) = x^2 - 3x + 2, find f'(x) and f''(x)


Using complex numbers, derive the trigonometric identities for cos(2θ) and sin(2θ).


Find dy/dx of the equation (x^3)*(y)+7x = y^3 + (2x)^2 +1 at point (1,1)


The equation of a circle is x^2+y^2-6x-4y+4=0. i) Find the radius and centre of the circle. ii) Find the coordinates of the points of intersection with the line y=x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning