differentiate (1+2x^2)^(1/2)

This differentiation requires use of the chain rule. The first step is to differentiate the whole thing, treating the bracket as u, so u=1+2x2. Therefore we are differentiating u1/2. This means our first step gives us the value:   1/2*u-1/2     (given student understands simple differentiation) Replacing u this gives us  1/2 *(1+2x2)-1/2   but now we must multiply this by the differential of the inside of the bracket (u=1+2x2) differentiating gives:  du/dx=4x   as the constant term disappears. so putting this back in, you multiply our two answers together to give                          dy/dx = 1/2 *(1+2x2)-1/2 *4x                            = 2x *(1+2x2)-1/2   and so you have your answer.

RS
Answered by Reuben S. Maths tutor

10315 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y= 2^x


differentiate- X^3- 2X^2+3


Find the equation of the tangent to the curve y=3x^3+x^2+5 at the point (1,9)


Find the total area enclosed between y = x^3 - x, the x axis and the lines x = 1 and x= -1 . (Why do i get 0 as an answer?)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning