How do I calculate where a function is increasing/decreasing?

This depends entirely on the gradient of the function, which is calculated as (dy/dx).

At (dy/dx)= 0, the function is neither increasing nor decreasing, since the gradient is zero. The max number of stationary points will be the same as the highest power (of the differential).

Plug in values either side of these stationary points. A positive dy/dx value means that the function is increasing, and a negative one means that the function is decreasing.

For example, say an equation has a stationary point (dy/dx = 0) at x=1. I would try values such as x = 1.1 and x= 0.9. If dy/dx is positive both sides, the function therefore is increasing at x>1 and x<1. 

SH
Answered by Steve H. Maths tutor

7131 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Of the following 4 equations, 3 of them represent parallel lines. Which is the odd one out?


When and how do I use the product rule for differentiation?


Solve the inequality x(x+2)>8 for x.


When using the addition rule in probability, why must we subtract the "intersection" to find the "union" with the Addition Rule?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences