How do I calculate where a function is increasing/decreasing?

This depends entirely on the gradient of the function, which is calculated as (dy/dx).

At (dy/dx)= 0, the function is neither increasing nor decreasing, since the gradient is zero. The max number of stationary points will be the same as the highest power (of the differential).

Plug in values either side of these stationary points. A positive dy/dx value means that the function is increasing, and a negative one means that the function is decreasing.

For example, say an equation has a stationary point (dy/dx = 0) at x=1. I would try values such as x = 1.1 and x= 0.9. If dy/dx is positive both sides, the function therefore is increasing at x>1 and x<1. 

SH
Answered by Steve H. Maths tutor

8761 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate (2x)/(x^2+1) dx with limits 1, 0


Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.


At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.


How to translate a function of form y = f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning