How to Solve: (11 − w)/4 = 1 + w

Step 1 : First we multiply both sides by 4, this is to eliminate /4 on the lhs(left hand side), and then we multiply the rhs(right hand side) by 4, this gives us (11-w) = 4(1+w) which is then equeal to 11-w = 4 + 4w Step 2 : We then group the w's on one side and the intigers on one side, we can add w to both sides to move the w from the lhs to the rhs, and move the 4 from rhs to lhs, as it is positive on rhs it becomes negative on lhs. We get 11-4 = 4W + W Step 3  : We now calculate the grouped values and get 7 = 5W, and can divide both sides by 5 to calculate W, so 7/5 or 1.4 is equal to W.

JS
Answered by Jahnavi S. Maths tutor

7235 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

solve this simultaneous equation: 2x + 3y = 19 (Eq1) and 3x + y = 11 (Eq2)


A square has sides of length x cm. The length of a rectangle is equal to the perimeter of this square. The perimeter of this rectangle is 14x cm. Find an expression for the width of this rectangle. Give your answer in terms of x.


Factorise 5 – 10m


Write 7.264 51 correct to 3 decimal places.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences