Answers>Maths>IB>Article

log8(5) = b. Express log4(10) in terms of b

log85=b

using the base change rule

log85=log45/log48

log48 can be solved:

log48=x

4x=8

22x=23

2x=3

x=3/2

Therefore we can write:

log85=log45/(3/2)=b

 log45=(3/2)b                [1]

To make  log45 into log410 we can use the product rule:

log42+log45=log4(2x5)=log410

So by adding log42 on both sides of equation [1] we can write

log42+log45=log42+ (3/2)b 

log410=log42+ (3/2)b 

But log42 can be solved:

log42=x

4x=2

22x=2

2x=1

x=1/2

Therefore we can conclude that

log410=1/2+ (3/2)b 

log410=(1+3b)/2 

BM
Answered by Beatrice M. Maths tutor

10085 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the constant term in the binomial expansion of (3x + 2/(x^2))^33


Prove that (sinx)^2 + (cosx)^2 = 1


Consider the functions f and g where f(x)=3x-5 and g(x)=x-2. (a) Find the inverse function for f. (b) Given that the inverse of g is x+2, find (g-1 o f)(x).


How does the right angle triangle definition of sine, cosine and tangent relate to their graphs as a function of angle and to Euler's formula?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning