Answers>Maths>IB>Article

log8(5) = b. Express log4(10) in terms of b

log85=b

using the base change rule

log85=log45/log48

log48 can be solved:

log48=x

4x=8

22x=23

2x=3

x=3/2

Therefore we can write:

log85=log45/(3/2)=b

 log45=(3/2)b                [1]

To make  log45 into log410 we can use the product rule:

log42+log45=log4(2x5)=log410

So by adding log42 on both sides of equation [1] we can write

log42+log45=log42+ (3/2)b 

log410=log42+ (3/2)b 

But log42 can be solved:

log42=x

4x=2

22x=2

2x=1

x=1/2

Therefore we can conclude that

log410=1/2+ (3/2)b 

log410=(1+3b)/2 

BM
Answered by Beatrice M. Maths tutor

10450 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

H(x)=(x^3)*(e^x) what is H'(x)


Given h(x) = 9^x + 9 and g(x) = 10*3^x, find {x | h(x) < g(x)}.


Given 1/2 + 1 + 2 + 2^2 + ... + 2^10 = a*2^b + c, find the values of a,b,c.


Given that f(x)=6x+4 and g(x)=3x^2+7, calculate g of f, for x=2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning