How to find the reciprocal of a graph, such as y=cos(x)?

To find the reciprocal of any graph, first consider the key points, in this case: (0,1), (90,0), (180,-1), (270,0) and (360,1). Since we are finding the reciprocal in the y-axis, we can find the reciprocal of the key points as values on the x-axis are unchanged and the reciprocal of 1 is 1, the reciprocal of -1 is -1 and the reciprocal of 0 is invalid so there is an asymptote. Using this information the key points on the reciprocal graph, y=sec(x), can be plotted along with its asymptotes. Once these have been done, the majority of the curve can be sketched, but it is important to check the range of the graph. The range of the graph of y=cos(x) is -1 ≤ x ≤ 1, applying our knowledge of reciprocals means that the range of the new graph must be x ≤ -1 and 1 ≤ x. This means that the curve will never touch the line y=0 and that it will only touch and never cross the lines y=1 and y=-1. Since y=cos(x) is an even function, y=sec(x) is also an even function so can be reflected in the y-axis to find the curve in the 2nd and 3rd quadrants.

AA
Answered by Aqeel A. Maths tutor

5045 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u=4x-1 to find the exact value of 1/4<int<1/2 ((5-2x)(4x-1)^1/3)dx


Find the general solution to the differential equation dy/dx = y/(x+1)(x+2)


Find the equation of the line that is perpendicular to the line 3x+5y=7 and passes through point (-2,-3) in the form px+qy+r=0


Given that y=((4x+1)^3)sin2x. Find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning