There are two lines in the x-y plane. The points A(-2,5) and B(3,2) lie on line one (L1), C(-1,-2) and D(4,1) lie on line two (L2). Find whether the two lines intersect and the coordinates of the intersection if they do.

We first want to find the equations of the lines. The general equation of a line is: (y-y1)=m(x-x1) where (x1,y1) are the coordinates of a point on the line and m is the gradient of the line. 
In case of line one, L1: (y-y1)=m1(x-x1). Let (x1,y1) = A(-2,5) and the gradient of the line using the given points: A(xa,ya), B(xb,yb) => m1=(ya-yb) / (xa-xb)= (5-2)/(-2-3)= -3/5             
So we get L1: (y-5) = -3/5(x+2)
                         y-5 = (-3/5)x - 6/5      /+5
                            y = (-3/5)x + 19/5
Line two, L2: (y-y2)=m2(x-x2). Let (x2,y2) = C(-1,-2) and the gradient is similarly m= (-2-1) / (-1-4) = -3/-5 = 3/5
L2: y+1 = 3/5(x+2)
      y+1 = (3/5)x + 6/5    /-1
          y = (3/5)x + 1/5
If the lines intersect we get a point E(x,y), which satisfies both line equations. (If we draw a quick picture we see that the lines intersect). Using the y coordinate of E we get:
(-3/5)x + 19/5 =(3/5)x + 1/5    / *15
         -9x + 57 = 5x + 3           / +9x - 3
                  54 = 14x               /  :14
                    x = 27/7
Using L2: y = (1/3)(27/7) + 1/5 = 52/35
So the intersection point is E(27/7, 52/35)
Check if E satisfies the equations and the calculation was correct:
L1: 52/35 = (-3/5)(27/7) + 19/5 = 52/35
L2​​​​​​​: 52/35 = (1/3)(27/7) + 1/5 = 52/35

ZS
Answered by Zsofia S. Maths tutor

7249 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. A small stone is dropped from a height of 25 meters above the ground. i) Find the time taken for the stone to reach the ground ii) Find the speed of the stone as it reaches the ground


Find the exact value of the integral of (2+7/x), between x=1 and x=e. Give your answer in terms of e.


Simplify: 4log2 (3) + 2log2(5)


The curve C has equation y=2x^2 -11x +13. (a) The point P has coordinates (2, – 1) and lies on C. Find the equation of the tangent to C at P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning