What is the gradient of the quadratic function y=3x²?

The gradient of a function with variable x is found by applying the differential operator to it. The differential operator is commonly written as d/dx. Hence the differential operator applied to the function y is written to be dy/dx. The differential operator, in the generic polynomial case takes the function that it’s ‘operating’ on and takes a power of a polynomial inside the function, multiplies the entire function by the value of the power, then the polynomials power is decreased by one. I.e. If y=xn, for n being a real value. Then dy/dx=nxn-1. For the equation given, If y=3x2 then by the differential operator, dy/dx=(3)(2)x2-1=6x = gradient of y for all x being a real value.

MC
Answered by Matthew C. Maths tutor

8996 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x=t^2/2 +1, y=4/t -1. Find the gradient of the curve when t =2.


Using the binomial theorem, find the coefficient of x^4*y^5 in (x-2y)^9.


A ball is thrown vertically upwards with a speed of 24.5m/s. For how long is the ball higher than 29.4m above its initial position? Take acceleration due to gravity to be 9.8m/s^2.


Using trigonometric identities, show that (cos(x) + sin(x))^2=1+sin(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences