Express the polynomial x^3+x^2-14x-24 as a product of three linear factors.

Firstly, use the factor theorem to determine one factor. Substitute factors of 24 into the equation, beginning at plus or minus 1 and then increasing. The first factor found will be -2, therefore (x+2) is a factor.

Using polynomial division, we find that (x3 + x2 -14x-24)/(x+2) = x2 - x -12. This can be easily factorised into (x-4)(x+3), so the final answer is (x-4)(x+3)(x+2).

This can be checked by expanding the brackets.

SW
Answered by Scarlet W. Maths tutor

14839 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

p(x)=2x^3 + 7x^2 + 2x - 3. (a) Use the factor theorem to prove that x + 3 is a factor of p(x). (b) Simplify the expression (2x^3 + 7x^2 + 2x - 3)/(4x^2-1), x!= +- 0.5


Binomially expand the equation (2+kx)^-3


Solve the equation 2y^(1/2) -7y^(1/4) +3 = 0


A curve has equation -2x^3 - x^2 + 20x . The curve has a stationary point at the point M where x = −2. Find the x-coordinate of the other stationary point of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences