Find f(x^(1/2)+4)dx (Where f is the integral sign)

The general form for an integrand if the integral is of the form f(x^n)dx is (1/(n+1)) * x^(n+1) +c This is applied to each term in the question, remembering the constant in the integrand:

So: f(6x+x^(1/2)+4)dx 

=(1/((1/2)+1))*x^((1/2)+1) + (1/(0+1))*x^(0+1) + c

note that 4=4x^0=4*1 as anything to the power of 0 is equal to one- x has an exponent of zero (n=0).

Simplifying terms:

f(6x+x^(1/2)+4)dx = (2/3)x^(3/2) + 4x + c

MA
Answered by Michael A. Maths tutor

3208 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that (2x + 11 )/(2x + 1)(x + 3) ≡ A /(2x + 1) + B /(x + 3) , find the values of the constants A and B. Hence show that the integral from 0 to 2 (2x + 11)/ (2x + 1)(x + 3) dx = ln 15.


given that angles A and B are such that, sec^2A-tanA = 13 and sinBsec^2B=27cosBcosec^2B


What is differentiation and integration?


Integrate the following between 0 and 1: (x + 2)^3 dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning