Differentiate 2x^3+23x^2+3x+5 and find the values of x for which the function f(x) is at either at a maximum or minimum point. (Don't need to specify which is which)

f(x)=2x3+23x2+3x+5

f'(x)=6x2+46x+3

Maximum or minimum when f'(x)=0

6x2+46x+3=0

Using the Quadratic Formula: x=(-b+-squareroot(b2-4ac))/2a

x1=-0.0658

x2=-7.6

SK
Answered by Sanjana K. Maths tutor

4014 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate sin^2(x)


find dy/dx where y = a^x


The curve C has equation y = (x^2 -4x - 2)^2. Point P lies on C and has coordinates (3,N). Find: a) the value of N. b) the equation of the tangent to C at the point P, in the form y=mx+c where m and c are constants to be found. c) determine d^2y/dx^2.


Solve the equation x^6 + 26x^3 − 27 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning