Differentiate 2x^3+23x^2+3x+5 and find the values of x for which the function f(x) is at either at a maximum or minimum point. (Don't need to specify which is which)

f(x)=2x3+23x2+3x+5

f'(x)=6x2+46x+3

Maximum or minimum when f'(x)=0

6x2+46x+3=0

Using the Quadratic Formula: x=(-b+-squareroot(b2-4ac))/2a

x1=-0.0658

x2=-7.6

SK
Answered by Sanjana K. Maths tutor

4144 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

solve the following definite integral by decomposition into partial fractions: \int_{1}^{2}{\frac{1}{x^2+x}}dx


Prove by induction that the nth triangle number is given by n(n+1)/2


What is differentiation?


integrate cos^2(x)*sin(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning