Why is the derivative of x^n, nx^(n-1)?

From the definition of a derivative: f'(x) = lim h->0 ((f(x+h) - f(x)) / h) Let f(x) = x^n --> d\dx x^n = lim h->0 (((x+h)^n - x^n) / h) By binomial expansion, (x+h)^n = x^n + nhx^(n-1) + n(n-1)h^2 x^(n-2) + ... + h^n --> d\dx x^n = lim h->0 ((x^n + nhx^(n-1) + n(n-1)h^2 x^(n-2) + ... + h^n - x^n) / h) = lim h->0 (nx^(n-1) + n(n-1)h x^(n-2) + ... + h^(n-1)) = nx^(n-1)

JF
Answered by Joshua F. Maths tutor

4016 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the derivative of x^2 equal to 2x?


Express 1/(1+2x)(1-x) in partial fractions


Integrate xsin(2x) by dx between the limits 0 and pi/2.


The curve C has the equation: 2(x^2)y + 2x + 4y – cos (πy) = 17 use implicit differentiation to find dy/dx in terms of x and y


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences