Why is the derivative of x^n, nx^(n-1)?

From the definition of a derivative: f'(x) = lim h->0 ((f(x+h) - f(x)) / h) Let f(x) = x^n --> d\dx x^n = lim h->0 (((x+h)^n - x^n) / h) By binomial expansion, (x+h)^n = x^n + nhx^(n-1) + n(n-1)h^2 x^(n-2) + ... + h^n --> d\dx x^n = lim h->0 ((x^n + nhx^(n-1) + n(n-1)h^2 x^(n-2) + ... + h^n - x^n) / h) = lim h->0 (nx^(n-1) + n(n-1)h x^(n-2) + ... + h^(n-1)) = nx^(n-1)

JF
Answered by Joshua F. Maths tutor

4721 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x+3y+3=0. The line AB is parallel to the line with equation y=mx+7 . Find the value of m.


How to get A and A* in Maths?


What methods are there for integration?


I don't understand why the function "f(x)=x^2 for all real values of x" has no inverse. Isn't sqrt(x) the inverse?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning