Find the stationary points of the curve y=2*x^3-15*x^2+24*x+17. Determine whether these points are maximum or minimum.

First, differentiate and put the derivative equal to zero. dy/dx=6x^2-30x+24=0. Solve this equation to get that x=4 and x=1. Substitute these values into the original equation to get the corresponding values of y. The stationary points are (1,17) and (4,-10). Calculate the second derivative to get d^2y/dx^2=12*x-30. When x=1 the second derivative is less than zero so (1,17) is a maximum point and when x=4 the second derivative is greater than zero so (4,-10) is a minimum point.

SM
Answered by Shaun M. Maths tutor

4022 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral of a compound equation (or otherwise finding the area under a graph): f(x) = 10x*(x^(0.5) - 2)


At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.


How to differentiate using the Product Rule


Integrate sinx*ln(cosx) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning