Find the values of the constants a and b for which ax + b is a particular integral of the differential equation 2y' + 5y = 10x. Hence find the general solution of 2y' + 5y = 10x .

We start by letting yp = ax+b, as suggested, and finding the derivative yp' = a. Substituing into ODE  (by way of matching coefficients) gives a pair of simulataneous (algebraic) equations:

(1) 2a=5b

(2) -5a=10

which can be solved to give (a,b)=(-2,-4/5). Then yp=-2x-4/5.

We now find the characteristic solution to the homogeneous ODE, 2y'+5y=0. By rearranging and integrating we find that 

2ln|y| = 5x+C

which we rearrange to find yc = Aexp(5x/2). Then the general solution, given by y(gs)=yc+yp, takes the form

y=Aexp(5x/2)-2x-4/5,

and we are done.

BR
Answered by Ben R. Maths tutor

4641 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is sin(t)^2 + cos(t)^2 = 1 true for all t?


Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants


solve the differential equation dy/dx=(3x*exp(4y))/(7+(2x^(2))^(2) when y = 0, x = 2


How do you know if the second derivative of an equation is a maximum or a minimum?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning