Find the values of the constants a and b for which ax + b is a particular integral of the differential equation 2y' + 5y = 10x. Hence find the general solution of 2y' + 5y = 10x .

We start by letting yp = ax+b, as suggested, and finding the derivative yp' = a. Substituing into ODE  (by way of matching coefficients) gives a pair of simulataneous (algebraic) equations:

(1) 2a=5b

(2) -5a=10

which can be solved to give (a,b)=(-2,-4/5). Then yp=-2x-4/5.

We now find the characteristic solution to the homogeneous ODE, 2y'+5y=0. By rearranging and integrating we find that 

2ln|y| = 5x+C

which we rearrange to find yc = Aexp(5x/2). Then the general solution, given by y(gs)=yc+yp, takes the form

y=Aexp(5x/2)-2x-4/5,

and we are done.

BR
Answered by Ben R. Maths tutor

4815 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

You have a five-litres jug, a three-litres jug, and unlimited supply of water. How would you come up with exactly four litres of water (with no measuring cup)?


Find the value of 2∫1 (6x+1) / (6x2-7x+2) dx, expressing your answer in the form mln(2) + nln(3), where m and n are integers.


A curve has the equation 2x^2 + xy - y^2 +18 = 0. (1) Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.


Given that (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2) = 7, show that tan(x)^2 = 3/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning