MYTUTOR SUBJECT ANSWERS

698 views

Finding Roots of Quadratic Equations

Finding Roots of Quadratic Equations

What is a root to an equation?

A root to an equation is a set of value(s) that satisfy the equation and when shown graphically they are the x values at which the function intercepts the x-axis.

The general form of a quadratic equation is:

ax2 + bx + c = 0                       where a, b and c are real coefficients

and before attempting to solve any quadratic function, you should always aim to get it into this form first.

If it is not in the correct form it can be converted by adding and subtracting each side functions of x in the initial form, for example:

x2 = 2x – 12                              (Subtract both sides by 2x)

x2 – 2x = -12                             (Add 12 to both sides)

x2 – 2x + 12 = 0

As you can now see the previous equation is now in the standard form ax2 + bx + c = 0, where a = 1, b = 2 and c = 12.

Finding the Root(s) of Quadratic Equations

The first way to solve a quadratic equation is by factorising it, an example is:

x2 + 7x + 12 = 0           -->             (x + 3)(x + 4) = 0

the root to the equation is then given by the negative coefficient of the real number inside the bracket, hence is -3 and -4. A sketch of this graph would consist of a U shape intercepting the x-axis at -3 and -4.

The second way to solve a quadratic equation is to complete the square, an example is:

x2 - 10x + 25 = 0           -->             (x-5)2 = 9

The root to this equation is then worked out by square rooting each side and adding 5 to both sides, giving 8 and -2.

The final way to solve them by a quadratic formula, which is:

x = (-b +/- sqr(b2 – 4ac))/2a

The quadratic formula contains the function b2 – 4ac, this is called the discriminant and a, b and c are the coefficients of the equation when in the standard form. The value of the discriminant can show how many roots are present for a particular equation:

b2 – 4ac > 0                              2 real roots

b2 – 4ac = 0                              1 real root

b2 – 4ac < 0                              2 imaginary roots (Complex conjugates)

Example 1

x2 + 6x + 3 = 0                         a=1, b=6 and c=3

b2 – 4ac = 36 – 12 = 24

hence x = (-6 +/- 2sqr6)/2 = -3 +/- sqr6

so the two roots are -3 + sqr6 and -3 – sqr6

Example 2

x2 + 2x + 1 = 0                         a=1, b=2 and c=1

b2 – 4ac = 0

hence  x = -2/2 = -1

Example 3

x2 + 8x + 25 = 0    a=1, b=8 and c=25

b2 – 4ac = 64 – 100 = -36

The discriminant is less than 0, which shows that 2 complex conjugate roots are the solutions to the equation.

Since we can not find the square root of a negative number, we instead denote the term i, this represents the square root of -1 and also shows that i2 = -1. This now allows the solution to be found:

x = (-8 +/- 6i)/2 = -4 +/- 3i

hence the solutions are -4 + 3i and -4 – 3i which are complex conjugates

Alexander G. GCSE Maths tutor, GCSE Physics tutor

2 years ago

Answered by Alexander, a GCSE Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

533 SUBJECT SPECIALISTS

£18 /hr

Sophia H.

Degree: Biomedical Sciences (Bachelors) - Cardiff University

Subjects offered:Maths, Russian+ 1 more

Maths
Russian
English

“Hopeful doctor in the making looking to help you reach your goals! I'm interested in everything so I am sure we will have something in common. ”

£24 /hr

Karolina K.

Degree: Dentistry (Bachelors) - Kings, London University

Subjects offered:Maths, Science+ 5 more

Maths
Science
Psychology
Chemistry
Biology
-Personal Statements-
-Medical School Preparation-

“Hi, my name is Karolina and I am a Dentistry Student from King's College London.  I understand that many students find certain aspects of the A-level syllabus challenging and having recently completed mine I believe that I know how to...”

£20 /hr

Sara J.

Degree: Computing Science (Bachelors) - Glasgow University

Subjects offered:Maths, Geography+ 2 more

Maths
Geography
Computing
-Personal Statements-

“Undergraduate student at University of Glasgow with passion for Computing Science, Mathematics and Geography.”

About the author

Alexander G.

Currently unavailable: until 18/05/2016

Degree: Natural Science specialising in Mathematics, Chemistry and Physics (Masters) - York University

Subjects offered:Maths, Physics

Maths
Physics

“About Me: I'm currently a first year undergraduate at University of York, studying Natural Sciences specializing in Mathematics, Chemistry and Physics. I have a real passion and drive when it comes to all things science and maths.  I...”

MyTutor guarantee

You may also like...

Other GCSE Maths questions

What is the best way to revise for my Maths GCSE?

Given 6x+2y=4 and 5x+y=8, solve the simultaneous equations to find x and y.

Find the volume and surface area of a cylinder, of length 20cm and radius 5cm.

Make x the subject of the equation y=(2(1+x))/(3x-1)

View GCSE Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok