Given that Sin(A) = 1/sqrt(3), show that Tan(A) = 1/sqrt(2)

Using: Tan(x) = Sin(x)/Cos(x)

Using: Cos(x) = sqrt(1-Sin2(x))

Cos(A) = sqrt(1-Sin2(A)) = sqrt(1-1/3) = sqrt(2)/sqrt(3)

Therefore: Tan(A) = Sin(A)/Cos(A) = (1/sqrt(3))/(sqrt(2)/sqrt(3)) = 1/sqrt(2)

SH
Answered by Sameh H. Maths tutor

4252 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you solve the inequality x^2-2x-8 >= 0?


What is the derivative of y=(e^(2x))(sin(3x))


How do you find the stationary points on a curve?


Express 4x/(x^2-9)-2/(x+3) as a single fraction in its simplest form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning