Derive Law of Cosines using Pythagorean Theorem

Consider the triangle ABC. Denote h the altitude through B and D the point where h intersects the (extended) base AC
Cosine function for triangle ADB.

cos α= x/c  =>  x=c*cos α
 

Pythagorean theorem for triangle ADB
x2+h2=c2*x2+h2=c2
h2=c2−x2*h2=c2−x2

Pythagorean theorem for triangle CDB
(b−x)2+h2=a2*(b−x)2+h2=a2

Substitute h2 = c2 - x2
(b−x)2+(c2−x2)=a2(b−x)2+(c2−x2)=a2
(b2−2bx+x2)+(c2−x2)=a2(b2−2bx+x2)+(c2−x2)=a2
b2−2
bx+c2=a2b2−2bx+c2=a2

Substitute x = ccos α
b2−2b
(ccosα)+c2=a2b2−2b(c*cos α)+c2=a2

Rearrange to get Law of Cosines

a2=b2+c2−2bc*cos α

JM
Answered by Jan M. Maths tutor

3034 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In this question, take 'log' to mean 'log base 5'. Solve the equation log(x^2-5)-log(x) = 2*log(2)


Let f(x) and g(x) be two odd functions defined for all real values of x. Given that s(x)=f(x)+g(x), prove that s(x) is also an odd function.


What is differentiation and how do I do it?


the graph y = 3/((1-4x)*(1/2)) has a shaded region between x = 0 and x = 2, find area of the region


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences