Derive Law of Cosines using Pythagorean Theorem

Consider the triangle ABC. Denote h the altitude through B and D the point where h intersects the (extended) base AC
Cosine function for triangle ADB.

cos α= x/c  =>  x=c*cos α
 

Pythagorean theorem for triangle ADB
x2+h2=c2*x2+h2=c2
h2=c2−x2*h2=c2−x2

Pythagorean theorem for triangle CDB
(b−x)2+h2=a2*(b−x)2+h2=a2

Substitute h2 = c2 - x2
(b−x)2+(c2−x2)=a2(b−x)2+(c2−x2)=a2
(b2−2bx+x2)+(c2−x2)=a2(b2−2bx+x2)+(c2−x2)=a2
b2−2
bx+c2=a2b2−2bx+c2=a2

Substitute x = ccos α
b2−2b
(ccosα)+c2=a2b2−2b(c*cos α)+c2=a2

Rearrange to get Law of Cosines

a2=b2+c2−2bc*cos α

JM
Answered by Jan M. Maths tutor

3071 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(i) Find the coordinates of the stationary point on the curve y = 3x^2 − 6/x − 2. [5] (ii) Determine whether the stationary point is a maximum point or a minimum point.


What is the chain rule and how does it work?


Solve x^3+2x^2+x=0


How do I do this question: A small stone is projected vertically upwards from the point A with speed 11.2 m/s. Find the maximum height above A reached by the stone.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning