Derive Law of Cosines using Pythagorean Theorem

Consider the triangle ABC. Denote h the altitude through B and D the point where h intersects the (extended) base AC
Cosine function for triangle ADB.

cos α= x/c  =>  x=c*cos α
 

Pythagorean theorem for triangle ADB
x2+h2=c2*x2+h2=c2
h2=c2−x2*h2=c2−x2

Pythagorean theorem for triangle CDB
(b−x)2+h2=a2*(b−x)2+h2=a2

Substitute h2 = c2 - x2
(b−x)2+(c2−x2)=a2(b−x)2+(c2−x2)=a2
(b2−2bx+x2)+(c2−x2)=a2(b2−2bx+x2)+(c2−x2)=a2
b2−2
bx+c2=a2b2−2bx+c2=a2

Substitute x = ccos α
b2−2b
(ccosα)+c2=a2b2−2b(c*cos α)+c2=a2

Rearrange to get Law of Cosines

a2=b2+c2−2bc*cos α

JM
Answered by Jan M. Maths tutor

3448 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2


How do you differentiate a function containing e?


Find (dy/dx) of x^3 - x + y^3 = 6 + 2y^2 in terms of x and y


How do you find the acute angle between two intersecting lines whos equations are given in vector form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning