Why does sin^2(x)+cos^2(x)=1?

We can understand this identity in two different, useful ways.

Firstly, we can use Euler's identities from trigonometry to obtain the desired result using straightforward algebra. We know that:

[1] sin(x) = (exp(ix)-(exp(-ix))/2i

[2] cos(x) = (exp(ix)+exp(-ix))/2

Squaring both sides, and using our knowledge of indices as well as the result i^2=-1 gives:

[3] sin^2(x) = -(exp(2ix)+exp(-2ix)-2)/4

[4] cos^2(x) = (exp(2ix)+exp(-2ix)+2)/4

Adding together [3] and [4] gives:

[5] sin^2(x)+cos^2(x) = (exp(2ix)+exp(-2ix)+2-exp(2ix)-exp(-2ix)+2)/4

Which simplifies to give:

[6] sin^2(x)+cos^2(x) = 4/4 = 1

As required.

Secondly, we can intuitively understand the result by using the most basic trigonometric definitions of sine and cosine that you will have encountered in GCSE and before, and by using Pythagoras' theorem.

Using the whiteboard and the mnemonic SOHCAHTOA, we can see that:

[7] sin(x) = O/H

[8] cos(x) = A/H

Where O, A and H represent the Opposite, Adjacent and Hypotenuse of the triangle relative to the angle, x. Squaring both sides gives:

[9] sin^2(x) = O^2/H^2

[10] cos^2(x) = A^2/H^2

Adding together [9] and [10] gives:

[11] sin^2(x)+cos^2(x) = (O^2+A^2)H^2

From Pythagoras' theorem, we know that O^2+A^2=H^2, and so we find that [11] reduces to:

[12] sin^2(x)+cos^2(x) = H^2/H^2 = 1

As required.

AM
Answered by Alex M. Maths tutor

3668 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find dy/dx of x^1/2 + 4/(x^1/2) + 4


The gradient of the curve at point (x,y) is given by dy/dx = [7 sqrt(x^5)] -4. where x>0. Find the equation of the curve given that the curve passes through the point 1,3.


If a circle passes through points (2,0) and (10,0) and it has tangent line along the y-axis, then what are the possible equations of the circle?


Derive 2*x^(3/2)+x+4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning