If y = exp(x^2), find dy/dx

Recall that the derivative of exp(x) is exp(x), but notice this question is slightly more complex due to the x^2 term. This is example of differentiationg composite functions, and so the chain rule is required. To begin, we'll set u = x^2, and then compute du/dx = 2x. Furthermore, we observe that y = exp(u) and dy/du = exp(u). Then, by the chain rule, we have dy/dx = dy/du * du/dx = exp(u) * 2x = exp(x^2) * 2x.

SB
Answered by Stuart B. Maths tutor

7570 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the coordinates of the turning points of the curve y = 2x^4-4x^3+3, and determine the nature of these points


A curve is defined by the parametric equations x = 3^(-t) + 1, y = 2 x 2^(t). Show that dy\dx = -2 x 3^(2t).


Sketch the graph of x^2+y^2-6x-4y=23


i) differentiate xcos2x with respect to x ii) integrate xcos2x with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences