If y = exp(x^2), find dy/dx

Recall that the derivative of exp(x) is exp(x), but notice this question is slightly more complex due to the x^2 term. This is example of differentiationg composite functions, and so the chain rule is required. To begin, we'll set u = x^2, and then compute du/dx = 2x. Furthermore, we observe that y = exp(u) and dy/du = exp(u). Then, by the chain rule, we have dy/dx = dy/du * du/dx = exp(u) * 2x = exp(x^2) * 2x.

SB
Answered by Stuart B. Maths tutor

8146 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate?


Find the area bounded by the curve x^2-2x+3 between the limits x=0 and x=1 and the horizontal axis.


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


Use Implicit Differentiation to find dy/dx of the following equation: 3(x)^2 + 8xy + 5(y)^2 = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning