Integrate sin(x)cos(x)^2 from 0 to π/2

Use substitution u=cos(x) resulting in du=-sin(x)dx: ∫0π/2sin(x)cos(x)^2dx = ∫0π/2-u^2du = [-1/3 u^3]x=0x=π/2 = [-1/3 cos(x)^3]0π/2 = (-1/3 cos(π/2)^3) - (-1/3 cos(0)^3) = (-1/3 0^3 ) - (-1/3 1^3) = 0 + 1/3 = 1/3

BS
Answered by Benedek S. Maths tutor

8758 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

C1 - Simplifying a fraction that has a root on the denominator


A factory produces cartons each box has height h and base dimensions 2x, x and surface area A. Given that the capacity of a carton has to be 1030cm^3, (a) Using calculus find the value of x for which A is a minimum. (b) Calculate the minimum value of A.


Find the coordinate of the stationary point on the curve y = 2x^2 + 4x - 5.


Given that x=3 is a solution to f(x)= 2x^3 - 8x^2 + 7x - 3 = 0, solve f(x)=0 completely.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning