Solve the following simultaneous equation: 1) 2x=y-5, 2) 2y^2=4x^2+4x-15

The most instinctual method one would go by is to rearrange the terms so that one side of the equation will be equal to either x,y, or zero. In this case to avoid fractions it may be best to rearrange the equation in terms of y, hence y=2x+5- the second equation does not need to be rearranged. Examining Eq2, we see that it is possible to factorise is hence getting 2y^2=(2x-3)(2x+5). Substituting Eq 1into Eq2, we get: 2(2x+5)^2=(2x-3)(2x+5). Cancellation of (2x+5) on both sides is possible here, so we are left with: 2(2x+5)=2x-3, which when rearranged to make 'x' the subject gives x= -13/2.

KL
Answered by King-Ting L. Maths tutor

3339 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve these simultaneous equations (1) 12x + 3.5y = 32 (2) 8x + 3y = 24


1: x = 2, 2: y = x + 5 -> Solve this pair of simultaneous equations.


(i) Find the gradient of the straight line passing through the points: (0,3) and (9,21). (ii) Write down the equation of the line in form y = mx + c


You area told that y is proportional to x2 and that when y = 75, x = 5. a) Find a formula for y in terms of x. b) Find the value of y when x = 3. c) Find the value of x when y = 1200.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning