Solve the following simultaneous equation: 1) 2x=y-5, 2) 2y^2=4x^2+4x-15

The most instinctual method one would go by is to rearrange the terms so that one side of the equation will be equal to either x,y, or zero. In this case to avoid fractions it may be best to rearrange the equation in terms of y, hence y=2x+5- the second equation does not need to be rearranged. Examining Eq2, we see that it is possible to factorise is hence getting 2y^2=(2x-3)(2x+5). Substituting Eq 1into Eq2, we get: 2(2x+5)^2=(2x-3)(2x+5). Cancellation of (2x+5) on both sides is possible here, so we are left with: 2(2x+5)=2x-3, which when rearranged to make 'x' the subject gives x= -13/2.

KL
Answered by King-Ting L. Maths tutor

3187 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A linear sequence starts a + 2b, a + 6b ,a + 10b ,…….. ,…….. The 2nd term has value 8. The 5th term has value 44. Work out the values of a and b


3 teas and 2 coffees have a total cost of £7.80 5 teas and 4 coffees have a total cost of £14.20 Work out the cost of one tea and the cost of one coffee.


How can I find x and y?


Find the roots of the quadratic equation 2x^2 - 15x - 8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences