Solve the following simultaneous equation: 1) 2x=y-5, 2) 2y^2=4x^2+4x-15

The most instinctual method one would go by is to rearrange the terms so that one side of the equation will be equal to either x,y, or zero. In this case to avoid fractions it may be best to rearrange the equation in terms of y, hence y=2x+5- the second equation does not need to be rearranged. Examining Eq2, we see that it is possible to factorise is hence getting 2y^2=(2x-3)(2x+5). Substituting Eq 1into Eq2, we get: 2(2x+5)^2=(2x-3)(2x+5). Cancellation of (2x+5) on both sides is possible here, so we are left with: 2(2x+5)=2x-3, which when rearranged to make 'x' the subject gives x= -13/2.

KL
Answered by King-Ting L. Maths tutor

3225 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Josie is paid £1200 per month. She is going to receive an increase of 4% in the amount she is paid. Work out how much money Josie we be paid each month after the increase.


Solve the equation 10x + 4 = 12x + 2


Tom tosses a coin. Every toss lands on either heads or tails. The coin lands on heads two thirds of the first 24 games. The coin then lands on heads the next 6 games. For all 30 tosses, work out the ratio heads:tails. Give the answer in the simplest form.


Line A is parallel to the line 4y+12x=24. Find the equation of Line A if it passes through the point (5,40/3).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences