A general function f(x) has the property f(-x)=-f(x). State a trigonometric function with this property and explain using the Maclaurin series expansion for this function why this property holds. Write down the integral in the limits -q to q of f(x) wrt x

Note that this property is the definition of an odd function, or draw a sketch of what this looks like in general about the horizontal axis. E.g. f(x)=sin(x) which has the expansion f(x)=x-((x^3)/3!)+((x^5)/5!)-...+((-1)^(n))((x^(2n+1))/(2n+1)!) where n runs from 0 to infinity. All terms in the series are odd and so when the sign of x is reversed, the sign of each term is reversed. We can factorise the negative sign out to prove f(-x)=-x+((x^3)/3!)-((x^5)/5!)+...-((-1)^(n))((x^(2n+1))/(2n+1)!)=-(x-((x^3)/3!)+((x^5)/5!)-...+((-1)^(n))((x^(2n+1))/(2n+1)!))=-f(x), as required. Simply write the integral expression and equate to zero as all positive area in the positive x domain is cancelled by all negative area in the neative x domain for any set of symmetrical limits. 

JH
Answered by James H. Maths tutor

4025 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the intensity of A-Level studies, what is the best way one can go about ensuring all tasks are completed in time?


The numbers a, b, c and d satisfy the following equations: a + b + 3c + 4d = k; 5a = 3b = 2c = d. What is the smallest value for k for which a, b, c and d are all positive integers


A curve has the equation y=sin(x)cos(x), find the gradient of this curve when x = pi. (4 marks)


(ii) Prove by induction that, for all positive integers n, f(n) = 3^(3n–2) + 2^(3n+1) is divisible by 19


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning