Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.

First let a = b = x such that:          

          cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

becomes:

          cos(x + x) = cos(x)cos(x) - sin(x)sin(x)

Leading to:

          cos(2x) = cos2(x) - sin2(x)

Using the fact that sin2(y) + cos2(y) = 1 or rearranged sin2(y) = 1 - cos2(y):

          cos(2x) = cos2(x) - (1 - cos2(y)) = 2cos2(x) - 1, as required.

Another suitable approach may involve the Maclaurin series of cos(2x) and cos2(x) to arrive at the required relation, although this is more involved.

BH
Answered by Benjamin H. Maths tutor

4256 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the ODE y' = -x/y.


Integrate xsin(x) with respect to x


What is the area under the graph of (x^2)*sin(x) between 0 and pi


How do you differentiate a function comprised of two functions multiplied together?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning