Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.

First let a = b = x such that:          

          cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

becomes:

          cos(x + x) = cos(x)cos(x) - sin(x)sin(x)

Leading to:

          cos(2x) = cos2(x) - sin2(x)

Using the fact that sin2(y) + cos2(y) = 1 or rearranged sin2(y) = 1 - cos2(y):

          cos(2x) = cos2(x) - (1 - cos2(y)) = 2cos2(x) - 1, as required.

Another suitable approach may involve the Maclaurin series of cos(2x) and cos2(x) to arrive at the required relation, although this is more involved.

BH
Answered by Benjamin H. Maths tutor

4018 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the tangent at the point (2,1) of the curve with equation x^2 + 3x + 4.


Given that y =2x^3 + 3/(x^2), find a) dy/dx and b) the integral of y


How do I find where the stationary points of a function are?


Find the equation of the tangent line to the parabola y=x^2+3x+2 at point P(1, 6).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning