Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.

First let a = b = x such that:          

          cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

becomes:

          cos(x + x) = cos(x)cos(x) - sin(x)sin(x)

Leading to:

          cos(2x) = cos2(x) - sin2(x)

Using the fact that sin2(y) + cos2(y) = 1 or rearranged sin2(y) = 1 - cos2(y):

          cos(2x) = cos2(x) - (1 - cos2(y)) = 2cos2(x) - 1, as required.

Another suitable approach may involve the Maclaurin series of cos(2x) and cos2(x) to arrive at the required relation, although this is more involved.

BH
Answered by Benjamin H. Maths tutor

3859 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate y=x^2 between the limits x=3 and x=1


a curve is defined by y=2x^2 - 10x +7. point (3, -5) lies on this curve. find the equation of the normal to this curve


C1 - Simplifying a fraction that has a root on the denominator


How do I find the area bounded by the curve y=-x^2+4 and the line y=-x+2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning