Given that z=sin(x)/cos(x), show that dz/dx = sec^2(x).

We have a "fraction" which we wish to differentiate, so we use the quotient rule with u=sin(x) and v=cos(x).

This means that d/dx of u/v = (vdu/dx - udv/dx)/(v^2).

We have u=sin(x) so du/dx= cos(x).

We have v=cos(x) so dv/dx=-sin(x).

Substitutiong these into the quotient rule formula, we get:

dz/dx = (cos(x)*cos(x) - sin(x)(-sin(x)))/(cos^2(x)).

Double negative in the numerator gives a positive, i.e.

(cos(x)*cos(x) + sin(x)sin(x))/(cos^2(x)).

(cos^2(x) + sin^2(x))/(cos^2(x)).

Now we use the trig identity cos^2(x) + sin^2(x) = 1 to get

dz/dx = 1/cos^2(x)

which we know is the same as sec^2(x) since 1/cos(x) = sec(x).

Therefore dz/dx = sec^2(x).

GG
Answered by Gabriela G. Maths tutor

4495 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = (5x+4)/(3x-8) at the point (2, -7).


Differentiate x^(4) + x^(1/2) + 3x^(5)


Using the sum, chain and product rules, differentiate the function f(x) = x^n +x^3 * sin(1/[3x])


The equation of a curve C is (x+3)(y-4)=x^2+y^2. Find dy/dx in terms of x and y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning