Calculate the integral of (3x+3)/(2x^2+3x) between the limits 39 and 3

The first step is to split the fraction into 2 separate fractions using partial fractions techniques. Write 3x+3/2x^2+3x as A/x + B/2x+3 and solve to get A = 1, B = 1. We have now converted 3x+3/2x^2+3x into two much simpler fractions, 1/x + 1/2x+3

The next step is to integrate and we can recognise that both fractions are of the form, diferential of the denominator (or fraction of it), over the denominator. This means that by recognition we can integrate to get 0.5ln(2x+3) + lnx. Substituting values in and using natural logarithm laws we can come to the conclusion that the answer is ln39

OW
Answered by Oliver W. Maths tutor

3018 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function f(x) where f(x)= x^2 +sin(x) + sin^2(x)


How do you know if a function is odd or even?


Find all solution to the equation 3tan(x)=8/sin(x) for 0<=x<=360 degrees


A curve has the equation y = 4x^3 . Differentiate with respect to y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning