ABC are points on a circle, centre O. AO=9cm, OC=9cm and AC=15cm. Find the angle ABC.

Diagrams would be used to help visualise the answer. To find the angle OAC, the cosine rule needs to be used: cosA = (b2 + c2 - a2)/2bc. Therefore, looking at the diagram, (152 + 92 - 92)/2x15x9 = cosA cosA= 5/6, cos-1(5/6) = 33.56 degrees (to 4sf). This is angle OAC. Since AOC is an isoceles triangle, angle OAC and angle OCA are equal, so angle OCA is also 33.56 degrees (to 4sf). Because all angles in a triangle add up to 180 degrees, the final angle AOC can be calculated: 180-(33.56+33.56) = 112.88 degrees. Using circle theorems: the angle at the centre is twice the angle at the circumference. Therefore, 112.88/2 = 56.44 degrees. So angle ABC = 56.44 degrees (to 4sf).

IP
Answered by Imogen P. Maths tutor

3941 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A rectangular frame is made from 5 straight pieces of metal with height 5m and length 12m. One of the pieces of metal goes through the diagonal of the rectangle. The weight of the metal is 1.5 kg per metre. Work out the total weight of the metal


If (2x+3)/(x-4)-(2x-8)/(2x+1)=1, what is x?


Expand these Brackets


120 men and 80 women were asked if they drive to work. Altogether 1/4 of people said yes. And a 1/3 the of men said yes. What fraction of women said yes?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning