Differentiate x^2 + xy + y^2 =1 implicitly.

Each part can be done separately, so x^2 becomes 2x, xy becomes dy/dx + y by product rule, y^2 becomes 2y(dy/dx) by chain rule, and 1 becomes 0. Hence the answer is 2x + y + (2y+1)dy/dx = 0, but the answer is commonly given in the form dy/dx = -(2x+y)/(2y+1)

TD
Answered by Tutor80806 D. Maths tutor

4678 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = x^2-2x-3 at x=-1


(x-4)^3


Sketch the curve y = (2x-1)/(x+1) stating the equations of any asymptotes and coordinates of the intersection with the axis. As an extension, what standard transformations from C1 could you use on y=1/x to get this curve?


Find the coordinates of the stationary point of y = x^2 + x - 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences