Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5

y=(4x^2+1)^5                        y=u^5          u=4x^2+1

                                             y’=5u^4   (wrt u)  u’=8x

y’=40x(4x^2+1)^4

y’=40x(4x^2+1)^4=0             x=0  (x^2+1>0)

                           

EB
Answered by Ellie B. Maths tutor

4155 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a parametric equation?


A curve has equation y = 20x −x2 −2x3 . (A) Find the x-coordinates of the stationary points of the curve.


At time t = 0, a particle is projected vertically upwards with speed u m s–1 from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s–1. Find the value of u and T and evaluate the model. (AS mechanics)


How do I integrate sin^2(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning