Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5

y=(4x^2+1)^5                        y=u^5          u=4x^2+1

                                             y’=5u^4   (wrt u)  u’=8x

y’=40x(4x^2+1)^4

y’=40x(4x^2+1)^4=0             x=0  (x^2+1>0)

                           

EB
Answered by Ellie B. Maths tutor

4070 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the normal line at the point H, where θ= π/6, on the curve with equations x=3sinθ and y=5cosθ


A curve has the equation (x+y)^2 = xy^2. Find the gradient of the curve at the point where x=1


Integrate (x)(e^x) with respect to x and then integrate (x)(e^x) with respect to y.


Solve the following equation: x^(3) - 6x^(2) + 11x - 6 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning