Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5

y=(4x^2+1)^5                        y=u^5          u=4x^2+1

                                             y’=5u^4   (wrt u)  u’=8x

y’=40x(4x^2+1)^4

y’=40x(4x^2+1)^4=0             x=0  (x^2+1>0)

                           

EB
Answered by Ellie B. Maths tutor

4158 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate a^x


Solving harder exponential equations, e.g. 5/[exp(x) + 6exp(-x)] - 1 = 0 . CORE MATHS.


Given that log_{x} (7y+1) - log_{x} (2y) =1 x>4, 0<y<1 , express y in terms of x.


Integrate (x)(e^x) with respect to x and then integrate (x)(e^x) with respect to y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning