Integrating cos^2(x)+5sin^2(x)

Firstly, note that cos^2(x)+5sin^2(x)= cos^2(x) +sin^2(x) +4sin^2(x).

By trignoemtric identies, cos^2(x)+sin^2(x)=1 and so we can just integrate 1+4sin^2(x) since this is equal to cos^2(x)+5sin^2(x).

Again, by trignometric identities, 4sin^2(x)=4(1/2-1/2 cos(2x))=2-2cos(2x),

and so 1+4sin^2(x)=3-2cos(2x).

We can now integrate this much more easily...

3 integrates to 3x and -2cos(2x) integrates to -sin(2x).

Hence the integral, remembering the constant of integration, is...

3x -sin(2x) +c

RL
Answered by Rafe L. Maths tutor

8402 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why bother with learning calculus?


Find the solution of the differential equation: dy/dx = (xy^2 + x)/y. There is no need to rearrange the solution to be in terms of y.


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


What's the point of Maths?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning