Given that y = 8x + 2x^-1, find the 2 values for x for which dy/dx = 0

First differentiate y with respect to x, which gives you dy/dx = 8 - 2x^-2. This needs to equal zero so equate to zero. 8-2x^-2 = 0. You can then bring the 2x^-2 to the other side giving 2x^-2=8. Dividing both sides by 2 gives x^-2 = 4. You can then flip both sides, giving x^2 = 1/4. Then square root both sides giving x = +/- 1/2. 

RB
Answered by Rosemary B. Maths tutor

3629 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation x^2+2y^2=3x, by differentiating implicitly find dy/dy in terms of x and y.


A particle A rests on a smooth inclined plane, it is connected to a particle B by a light inextensible string that is passed over a fixed smooth pulley at the top of the plane. B hangs freely. Find the acceleration of the system and tension in the string.


Find the equation of the tangent line to the curve y = 2x^2 - 4x + 3 at the point (3,9)


i) Simplify (2 * sqrt(7))^2 ii) Find the value of ((2 * sqrt(7))^2 + 8)/(3 + sqrt(7)) in the form m + n * sqrt(7) where n and m are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences