Given that y = 8x + 2x^-1, find the 2 values for x for which dy/dx = 0

First differentiate y with respect to x, which gives you dy/dx = 8 - 2x^-2. This needs to equal zero so equate to zero. 8-2x^-2 = 0. You can then bring the 2x^-2 to the other side giving 2x^-2=8. Dividing both sides by 2 gives x^-2 = 4. You can then flip both sides, giving x^2 = 1/4. Then square root both sides giving x = +/- 1/2. 

RB
Answered by Rosemary B. Maths tutor

3666 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has the equation x^3 + 2xy- x - y^3 -20 = 0. Find dy/dx in terms of x and y.


What is the chain rule?


How to transform graphs of functions?


Differentiate (3x^2-5x)/(4x^3+2x^2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning