Express (3 - sqrt(5))^2 in the form m + n*sqrt(5), where m and n are integers.

Layout the problem in a more recognisable form such as (3 - sqrt(5))(3 - sqrt(5)). Notice that this looks a lot like a factorised quadratic equation, where sqrt(5) can be treated as a variable like x. Therefore, we can expand these brackets in the same way we expand these factorised quadratic equations. Following the same process should result in 9 - 6sqrt(5) + sqrt(5)2 which is equal to 14 - 6sqrt(5). Checking back with the question it where m and n are wanted, n = -6 as it is the coefficient of the term with sqrt(5) and m = 14 as it is the term that is a pure integer.

AP
Answered by Anselmo P. Maths tutor

8274 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line y = mx + 7. Find the value of m.


Let f(x) = x^3 -2x^2-29x-42. a)Show (x+2) is a factor b)Factorise f(x) completely


What is the integral of x^2 sin(x) between the limits 0 and π/2


Integrate x^2 + 2x + 5x^-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences