Express (3 - sqrt(5))^2 in the form m + n*sqrt(5), where m and n are integers.

Layout the problem in a more recognisable form such as (3 - sqrt(5))(3 - sqrt(5)). Notice that this looks a lot like a factorised quadratic equation, where sqrt(5) can be treated as a variable like x. Therefore, we can expand these brackets in the same way we expand these factorised quadratic equations. Following the same process should result in 9 - 6sqrt(5) + sqrt(5)2 which is equal to 14 - 6sqrt(5). Checking back with the question it where m and n are wanted, n = -6 as it is the coefficient of the term with sqrt(5) and m = 14 as it is the term that is a pure integer.

AP
Answered by Anselmo P. Maths tutor

8859 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does the second derivative tell us something about a function?


The equation of a curve is xy^2= x^2 +1. Find dx/dy in terms of x and y, and hence find the coordinates of the stationary points on the curve.


Draw y + 14 = x ( x - 4 ) and label all points of intersection with axes.


How do I find the maximum/minimum of a curve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning