Rationalise the following: { 5 } / { 3 - sqrt(2) }

The aim here is to turn the fraction so that the denominator does not have a surd. 

Given that we know that any surd squared is equal to the number itself, i.e sqrt(2) * sqrt(2) equas 2, or sqrt(x) * sqrt(x) = x we want to use this rule to try to get rid of the { sqrt(2) } in the question above.

Given however that the denominator is { 3 - sqrt(2) }, the only way to get rid of the surd all together is to multiply both the denominator and the numerator by { 3 sqrt(2) }. What we did here is reverse the sign. The sign ensures that the surds cancel when we expand the bracket out.

Original fraction to be rationlised: { 5 } / { 3 - sqrt(2) }

Rationalising: { (5) ( 3 + sqrt(2) ) } / { (3 - sqrt(2) ) ( 3 + sqrt(2) ) }

When you multiply everything out you end up with:

{ 15 + 5*sqrt(2) } / { 7 }

AS
Answered by Amin S. Maths tutor

5376 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to solve the following simultaneous equations? Equation 1: 3x+y=10 Equation 2: 2x-y=5


Work out 51% of 400? (No calculator)


When will I ever need to use this in real life?


I’m having some trouble understanding functions. Mainly concerning how to know what the input and outputs are. Could you give me an explanation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences