Differentiate y=(3x-1)/(2x-1)

First, recognise that the function is a fraction and recall the quotient rule.     y=u/v     dy/dx=(vu'-uv')/v2, where u' and v' is the derivative of u and v respectively. Then, apply the rule.     u=3x-1, v=2x-1     u'=3, v'=2     dy/dx=[3(2x-1)-2(3x-1)]/(2x-1)2 Finally, simplify the expression.     dy/dx=1/(2x-1)2

MM
Answered by Martin M. Maths tutor

7485 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

express the following fraction in the form of m + (n)^1/2. the fraction is ((3*(5)^1/2)^2 - 7)/(3 + 7*(5)^1/2). where m,n are real numbers.


Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


Why/How does differentiation work?


Integrate: xe^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning