Differentiate y=(3x-1)/(2x-1)

First, recognise that the function is a fraction and recall the quotient rule.     y=u/v     dy/dx=(vu'-uv')/v2, where u' and v' is the derivative of u and v respectively. Then, apply the rule.     u=3x-1, v=2x-1     u'=3, v'=2     dy/dx=[3(2x-1)-2(3x-1)]/(2x-1)2 Finally, simplify the expression.     dy/dx=1/(2x-1)2

MM
Answered by Martin M. Maths tutor

7116 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What's the difference between the quotient rule and the product rule?


A curve C has the following equation: x^3 + 3y - 4(x^3)*(y^3) a) Show that (1,1) lies on C b) Find dy/dx


What are partial fractions for and how do I find them?


How would you differentiate f(x)=3x(2x-1)^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences