ABC is an acute-angled triangle. BA=7cm and BC=8cm. The area of triangle ABC is 18 cm^2 . Work out the size of angle BAC. Give your answer correct to 3 significant figures. You must show all your working.

Draw the triangle ABC and fill in the information given i.e. lengths of BA and BC and identify the angle we are looking for i.e angle BAC Looking at the formulas given identify which one we can use. We have two sides and the area therefore the one we select is the Area of a Triangle i.e. Area=(1/2)(absinC). Substitute and rearrange to find angle ABC is equal to 40o Now we have two sides and an angle so we can use the Cosine Rule i.e. a2=b2+c2-2bccosA . Now substitute our values into that equation and take the positive square root to obtain AC is equal to 5.216cm Now we know we want to find the angle BAC so use the Sine Rule i.e. a/sinA=b/sinB. Substitute in the values and rearrange to obtain the the angle BAC is equal to 80.4to 3 significant figures. This question was taken from the June 2016 Edexcel GCSE Higher Mathematics paper.

AM
Answered by Anna M. Maths tutor

11922 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write x^2 + 4x + 18 in the form (x + a)^2 + b, where a and b are constants to be determined.


Find the equation of the line that passes through (2, 4) and (7, -11)


In a village the number of houses and the number of flats are in the ratio 7 : 4 the number of flats and the number of bungalows are in the ratio 8 : 5 There are 50 bungalows in the village. How many houses are there in the village?


Two simultaneous equations are given as 2x + y = 5 and 3x + y = 7. Find the value of x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning