What is the partial fraction expansion of (x+2)/((x+1)^2)?

First we write the fraction in terms of partial fractions with two unknown numerators, A and B, as follows: (x+2)/(x+1)2 = A/(x+1) + B/(x+1)2

Note that since the denominator of the original fraction is of index two, we need to have two different fractions in our partial fraction expanison. Now we multiply through by (x+1)2 to get rid of all of the fractions and turn the problem into a more well known problem, solving a quadratic equation. We get: x+2 = A(x+1) + B. This is now simple to solve. We compare 'x' terms on the left and right hand side: x=Ax. This tells us A=1. Substituting this in, we have the equation: x+2=x+1+B. We can subtract x+1 from both sides and we get: 1=B. Therefore, our partial fraction expansion is:

(x+2)/(x+1)2 = 1/(x+1) + 1/(x+1)2

KR
Answered by Kim R. Maths tutor

4477 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of a straight line with the points P(5,3) and Q(8,12)


Find the gradient of the tangent to the curve with the equation y = (3x^4 - 18)/x at the point where x = 3


1. (a) Express 7cosx - 24sin x in the form R cos (x + a), (b) hence what is the minimum value of this equation


The curve C has equation ye^(-2x) = 2x + y^2. Find dy/dx in terms of x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning