ABC and DEF are similar isoceles triangles. AB=BC=5cm, AC=6cm, DF=12cm. What is the area of DEF?

We first split ABC into two right-angled triangles. We name the midpoint of AC, M. AM=1cm, and BM=sqrt(52-32)=4 by Pythagoras. The area of ABC =1/2ACBM=1/264=12. We can see that the side lengths of DEF are greater than the side lengths of ABC by a factor of two. The area is therefore greater than ABC by a factor of 22=4. So the area of DEF=4*12=48

PG
Answered by Peter G. Maths tutor

3269 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In an office there are twice as many females as males. 1/4 of females wear glasses. 3/8 of males wear glasses. 84 people in the office wear glasses. What is the total number of people in the office?


What are the possible ways to find the roots from a quadratic equation?


Solve simultaneously 2x + 3y = 18 and y = 3x – 5 to find the value of x and y.


Expand and simplify (-2x+3)(x-6)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences