Use the binomial series to find the expansion of 1/(2+5x)^3 in ascending powers of x up to x^3 (|x|<2/5)

We want to rearrange the expression to the form (1+y)^n so we can use the general result: (1+y)^n=1+ny+[n(n-1)/2]y^2+[n(n-1)(n-2)/3!]y^3+... 1/(2+5x)^3 = (2+5x)^-3 = [2(1+5x/2)]^-3 = (2^-3)(1+5x/2)^-3 using the result ... = (1/8)(1+(-3)(5x/2)+(-3)(-4)/2^2+(-3)(-4)(-5)/3!^3+... = (1/8)(1-15x/2+(75/2)x^2-(625/4)x^3)= 1/8-(15/16)x+(75/16)x^2-(625/32)x^3 

SJ
Answered by Saskia J. Maths tutor

13247 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the coefficient of the x^3 term in the binomial expansion of (2x+(1/3x^2))^9


A curve has equation y = 4x + 1/(x^2) find dy/dx.


Find the integral of: sin^4(x)*cos(x)dx


Simplify: 3l^2mn+nl^2m−5mn^2l+l^2nm+2n^2ml−mn^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning