Use logarithms to solve the equation 3^(2x+1) = 4^100

We have 3^(2x+1) = 4^100

=> log(3^(2x+1)) = log(4^100)

=> (2x+1)log(3) = 100log(4)

IC
Answered by Ian C. Maths tutor

6468 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Please Simplify: (2x^2+3x/(2x+3)(x-2))-(6/x^2-x-2))


If we have a vector 4x + 6y + z and another vector 3x +11y + 2z then what is the angle between the two?Give the answer in radians


f(x)=12x^2e^2x - 14, find the x-coordinates of the turning points.


y=4sin(kx) write down dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning