Use logarithms to solve the equation 3^(2x+1) = 4^100

We have 3^(2x+1) = 4^100

=> log(3^(2x+1)) = log(4^100)

=> (2x+1)log(3) = 100log(4)

IC
Answered by Ian C. Maths tutor

6056 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

if f(x) = 4x^2 - 16ln(x-1) - 10, find f'(x) and hence solve the equation f'(x)=0.


7x+5y-3z =16, 3x-5y+2z=-8, 5x+3y-7z=0. Solve for x,y and z.


Differentiate with respect to x: y=xln(x)


Find where the curve 2x^2 + xy + y^2 = 14 has stationary points


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences