Differentiate x^cos(x) and find the derivative of cosec^-1(x)

for part a) let y=xcos(X) , the ln(y)=ln(xcos(X))=cos(x)ln(x), thus d/dx (ln(y(x)) = d/dx (cos(x)ln(x)), 1/y*dy/dx=cox(x)/x - sinxlnx => solve for dy/dx => y'(x)=xcos(X) (cox(x)/x - sinxlnx) b) d/dx cosec-1(x)= -1/x(x-1)1/2 this is shown by setting y as the function, rearrange for x then doing implict differentiation to solve for dy/dx in terms of y, then use the defenintions of sine to express in terms of x

HP
Answered by Hari P. Maths tutor

7427 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to find y-intercept on a graphical calculator


How do I find the angle between a vector and a plane in cartesian form?


If n is an integer prove (n+3)^(2)-n^(2) is never even.


Solve the simultaneous equation: y+4x+1=0 y^2+5x^2+2x=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences