Differentiate x^cos(x) and find the derivative of cosec^-1(x)

for part a) let y=xcos(X) , the ln(y)=ln(xcos(X))=cos(x)ln(x), thus d/dx (ln(y(x)) = d/dx (cos(x)ln(x)), 1/y*dy/dx=cox(x)/x - sinxlnx => solve for dy/dx => y'(x)=xcos(X) (cox(x)/x - sinxlnx) b) d/dx cosec-1(x)= -1/x(x-1)1/2 this is shown by setting y as the function, rearrange for x then doing implict differentiation to solve for dy/dx in terms of y, then use the defenintions of sine to express in terms of x

HP
Answered by Hari P. Maths tutor

8010 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

You are given the equation of the line y=x^3+x^2-2x. Find the stationary points of the curve and determine the maximum and minimum points and find where it crosses the x-axis and thus sketch the graph


Find the minimum value of the function, f(x)= x^2 + 5x + 2, where x belongs to the set of Real numbers


Prove the following identity: (1+cos⁡(x)+cos⁡(2x))/(sin⁡(x)+sin⁡(2x) )=cot⁡(x)


A curve has the equation y=3 + x^2 -2x^3. Find the two stationary points of this curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning