Consider f:R -> R, f = x/ sqrt(x^2+1). Prove that for any a between -1 and 1, f(x)=a has only one solution.

f'(x)=( sqrt (x^2+1) - x * ( x / sqrt (x^2 +1) ) ) / (x^2+1) = (x^2 + 1 + x^2) / ( (x^2 + 1) * sqrt ( x^2 + 1) ) =  1 / ( (x^2 + 1) * sqrt (x^2 + 1) ). 

f'(x) > 0 for any x => f is increasing. When x-> -infinite, lim f(x) = -1. When x -> infinite, lim f(x) = 1. f is a composition of continuous functions, so f is continuous. Therefore, for any a between -1 and 1, f(x) = a has one solution.

AC
Answered by Andreea Cristina G. Maths tutor

2934 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

f(x) = (x + 1)^2 and g(x) = 2(x - 1) Show that gf(x) = 2x(x + 2)


solve the simultaneous equation: 5x+y =21 and x-3y=9


Solve simultaneously, 2x-3y=16 and x+2y=-6


A rectangle has the side lengths root6m and root3m, what is the area of the rectangle in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning