How do I express y=acosx+bsinx in the form y=Rcos(x-c)?

From the addition formula, we know that:

Rcos(x-c) = Rcos(x)sin(c)+Rsin(x)cos(c)

Therefore:

acos(x)+bsin(x) = Rcos(x)cos(c)+Rsin(x)sin(c)

If we equate the coefficients of cos(x) and sin(x) we see that:

acos(x) = Rcos(x)sin(c);   therefore a = Rcos(c)

And that:

bsin(x) = Rsin(x)cos(c);    therefore b = Rsin(c)

To find c:

If we divide one of the above results by the other:

Rsin(c)/Rcos(c) = b/a

Rsin(c)/Rcos(c) = b/a

tan(c) = b/a

Therefore, c = arctan(b/a)

To find R:

a2+b2 = R2cos2(c)+R2sin2(c)

a2+b2 = R2(cos2(c)+sin2(c))

As cos2(c)+sin2(c) = 1,

a2+b2 = R2

(a2+b2)1/2=R

So, overall:

acos(x)+bsin(x) = (a2+b2)1/2cos(x-arctan(b/a))

DR
Answered by Daniel R. Maths tutor

25574 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find and classify all the stationary points of the function f(x) = x^3 - 3x^2 + 8


Why is the derivative of a function its gradient?


How do you show that (x+2) is a factor of f(x) = x^3 - 19x - 30, and then factorise f(x) completely?


Use the substitution u = cos 2x to find ∫(cos^2*(2x) *sin3 (2x)) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences